The Microtubule Network and Cell Death Are Regulated by an miR-34a/Stathmin 1/βIII-Tubulin Axis.
نویسندگان
چکیده
MicroRNA-34a (miR-34a) is a master regulator of signaling networks that maintains normal physiology and disease and is currently in development as a miRNA-based therapy for cancer. Prior studies have reported low miR-34a expression in osteosarcoma; however, the molecular mechanisms underlying miR-34a activity in osteosarcoma are not well-defined. Therefore, this study evaluated the role of miR-34a in regulating signal transduction pathways that influence cell death in osteosarcoma. Levels of miR-34a were attenuated in human osteosarcoma cells and xenografts of the Pediatric Preclinical Testing Consortium (PPTC). Bioinformatics predictions identified stathmin 1 (STMN1) as a potential miR-34a target. Biotin pull-down assay and luciferase reporter analysis confirmed miR-34a target interactions within the STMN1 mRNA 3'-untranslated region. Overexpression of miR-34a in osteosarcoma cells suppressed STMN1 expression and reduced cell growth in vitro Restoration of miR-34a led to microtubule destabilization and increased βIII-tubulin expression, with corresponding G1-G2 phase cell-cycle arrest and apoptosis. Knockdown of the Sp1 transcription factor, by siRNA silencing, also upregulated βIII-tubulin expression in osteosarcoma cells, suggesting that miR-34a indirectly affects Sp1. Validating the coordinating role of miR-34a in microtubule destabilization, when miR-34a was combined with either microtubule inhibitors or chemotherapy, STMN1 phosphorylation was suppressed and there was greater cytotoxicity in osteosarcoma cells. These results demonstrate that miR-34a directly represses STMN1 gene and protein expression and upregulates βIII-tubulin, leading to disruption of the microtubule network and cell death.Implications: The miR-34a/STMN1/βIII-tubulin axis maintains the microtubule cytoskeleton in osteosarcoma, and combining miR-34a with microtubule inhibitors can be investigated as a novel therapeutic strategy. Mol Cancer Res; 15(7); 953-64. ©2017 AACR.
منابع مشابه
TUBB3/βIII-tubulin acts through the PTEN/AKT signaling axis to promote tumorigenesis and anoikis resistance in non-small cell lung cancer.
βIII-tubulin (encoded by TUBB3) expression is associated with therapeutic resistance and aggressive disease in non-small cell lung cancer (NSCLC), but the basis for its pathogenic influence is not understood. Functional and differential proteomics revealed that βIII-tubulin regulates expression of proteins associated with malignant growth and metastases. In particular, the adhesion-associated t...
متن کاملThe downregulation of ATG4B mediated by microRNA-34a/34c-5p suppresses rapamycin-induced autophagy
Objective(s): Autophagy-related 4B (ATG4B) plays an important role in the process of autophagy induction. However, the molecular events that govern the expression of ATG4B in this process are not well known. Materials and Methods: Human ATG4B 3'-UTR region (1377 nt) containing miR-34a/miR-34c-5p binding site was amplified by PCR. Luciferase assay was used to assess the activity of reporter gene...
متن کاملEvaluation of miR-34a Effect on CCND1 mRNA Level and Sensitization of Breast Cancer Cell Lines to Paclitaxel
Background: A growing body of literature has revealed the effective role of miR-34a, as a tumor suppressor and regulator of expression of multiple targets in tumorigenesis and cancer progression. This study aimed at evaluating the potential effects of miR-34a alone or in combination with paclitaxel on breast cancer cells. Methods: After miR-34a transduction by lentiviral vectors in two MCF-7 an...
متن کاملTranscriptome-wide characterization of the endogenous miR-34A-p53 tumor suppressor network
microRNA-34A is a critical component of the p53 network and expression of miR- 34A is down-regulated by promoter hypermethylation or focal deletions in numerous human cancers. Although miR-34A deregulation may be an important driver in cancer, the endogenous role of this microRNA in cellular homeostasis is not well characterized. To address this knowledge gap, we aimed to determine the transcri...
متن کاملRETRACTED: Drosophila Stathmin Is Required to Maintain Tubulin Pools
Stathmin, or Oncoprotein 18 (Op18), is the founding member of a phosphoprotein family that can regulate the microtubule cytoskeleton by sequestering tubulin and promoting microtubule catastrophe [1–3]. Stathmin is subject to spatially and temporally controlled regulatory phosphorylation, which inhibits its interaction with tubulin [4–6]. Drosophila Stathmin has similar properties to the mammali...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer research : MCR
دوره 15 7 شماره
صفحات -
تاریخ انتشار 2017